#### **FEATURES**

• The SR868.35-M3 is a true one-port, Surface-acoustic-wave(SAW) resonator in a surface-mount, ceramic M3 case. It provides reliable, fundamental-mode, quartz frequency stabilization offixed-frequency transmitters operating at 868.35MHz.

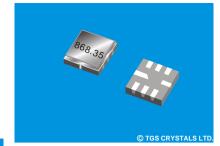
## **APPLICATIONS**

Communication

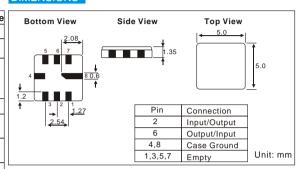
### SPECIFICATION

| _                                                            |                          | Product                  | Option Code |         |  |  |  |
|--------------------------------------------------------------|--------------------------|--------------------------|-------------|---------|--|--|--|
| P                                                            | arameters                | SR                       | SR          |         |  |  |  |
| Centre Frequency(fc) :                                       |                          | 868.350MHz               | <b>A</b>    | 868.350 |  |  |  |
| Frequency Tolerance(△fc): ±150KHz<br>±200KHZ<br>±250KHZ      |                          | $\triangle$              | C<br>D<br>E |         |  |  |  |
|                                                              | Turnover Temp(           | <b>Го):</b> 55°СМах.     | <u> </u>    |         |  |  |  |
| Temp.<br>Stability                                           | Turnover Freque          | <b>A</b>                 |             |         |  |  |  |
|                                                              | Frequency Temp<br>(FTC): | 0.037ppm/°C²             | •           |         |  |  |  |
| Insertion Lo                                                 | oss(IL):                 | <b>A</b>                 |             |         |  |  |  |
| Operating Temp. Range: -10℃~+60℃                             |                          |                          | •           |         |  |  |  |
| Storage Tem                                                  |                          | •                        |             |         |  |  |  |
| Quality<br>Factor                                            | Unloaded Q(Qu):          | 9,000                    | <b>A</b>    |         |  |  |  |
|                                                              | 50 Ω Loaded Q(C          | L): 1,500                | <b>A</b>    |         |  |  |  |
| DC Insulation Pins:                                          | n Resistance betw        | •                        |             |         |  |  |  |
| Frequency                                                    | Aging Absolute           |                          |             |         |  |  |  |
| the First Ye                                                 | ear(fA):                 | <b>A</b>                 |             |         |  |  |  |
| RF<br>Equivalent<br>RLC Model                                | Motional Resista         | ance(Rм):<br>26ΩMax.     | <b>A</b>    |         |  |  |  |
|                                                              | Motional Inducta         | •                        |             |         |  |  |  |
|                                                              | Motional Capaci          | tance(См):<br>0.776 fF   | •           |         |  |  |  |
|                                                              | Shunt Static Ca<br>(Co): | pacitance<br>2.8 pF Max. | <b>A</b>    |         |  |  |  |
| CW Therefo                                                   | re Power Dissipa         | tion: +10dBm             | <b>A</b>    |         |  |  |  |
| DC Voltage                                                   | Between Any Two          | •                        |             |         |  |  |  |
| Case Temp                                                    | erature:                 | <b>A</b>                 |             |         |  |  |  |
| Soldering T                                                  | emperature:              | <b>A</b>                 |             |         |  |  |  |
| Holder Type: 5.0X5.0X1.35mm                                  |                          | Δ                        | M3          |         |  |  |  |
| Package:                                                     |                          | Δ                        | Т           |         |  |  |  |
| ▲ Standard ★ Specifications Subject to Change Without Notice |                          |                          |             |         |  |  |  |

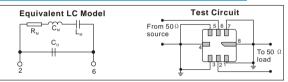
▲ Standard \* Specifications Subject to Change Without Notice △ Optional: please specify required code when inquiring or ordering


#### NOTE

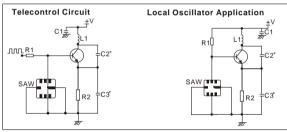
- 1. Electrostatic Sensitive Device. Observe precautions for handling 2.Freq. aging is the change  $\inf_{\epsilon}$  with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temp. above +65°C. Typically, aging is greatest the first yearafter manufacture, decreasing in subsequent years.
- 3. The center freq., fc, is measured at the minimum insertion loss point, IL, in the center freq., fc, is measured at the minimum insertion loss point, IL, in the center freq., fc, is measured at the minimum insertion loss point, IL, in the center freq., fc, is measured at the minimum insertion loss point, IL, in the center freq., fc, is measured at the minimum insertion loss point, IL, in the center freq., fc, is measured at the minimum insertion loss point, IL, in the center freq., fc, is measured at the minimum insertion loss point, IL, in the center freq., fc, is measured at the minimum insertion loss point, IL, in the center freq., fc, is measured at the minimum insertion loss point, IL, in the center freq., fc, is measured at the minimum insertion loss point, IL, in the center freq., fc, is measured at the minimum insertion loss point, IL, in the center freq., fc, is measured at the center freq., fc, is measured at the minimum insertion loss point, IL, in the center freq., fc, is measured at the center freq., fc, is measured with the resonator in the 50 Ω test system (VSWR≤1.2:1). Tpically, Tf<sub>oscillator</sub> or f<sub>transmitter</sub> is appr. equal to the resonator f<sub>c</sub>.
- 4. Typically, equipment utilizing this device requires emissions approval, which is
- the responsibility of the equipment manufacturer. 5.Unless noted otherwise, case temperature  $Tc=+25\%\pm2\%$ .
- 6. The design, manufacturing process, and specifications of this device are subject to change without notice.
- 7.Derived mathematically from one or more of the following directly measured parameters: fe, IL, 3dB bandwidth, fe versus Te, and Ce
- 8. Turnover temperature, T<sub>g</sub> is the temperature of maximum (or turnover) freq., f<sub>g</sub> The nominal center freq.at any case temp., T<sub>c</sub>, may be calculated from :f= f<sub>o</sub> [1-FTC (T<sub>o</sub>-T<sub>o</sub>)<sup>2</sup>]. Typically, oscillator T<sub>o</sub> is appr. equal to the specified resonator To.


# PART NUMBER GUIDE

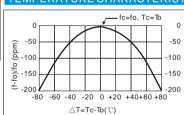
| TGS  | SR             | 868.35 | С         | М3     | Т       |
|------|----------------|--------|-----------|--------|---------|
| Mark | SAW Resonators | Centre | Frequency | Holder | Package |
|      | One-Port       | Freq.  | Tolerance | Type   |         |


e.g. TGS SR 868.35 C M3 T



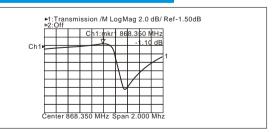

### DIMENSIONS




# **EQUIVALENT LC MODEL AND TEST CIRCUIT**



## TYPICAL APPLICATION CIRCUIT




## TEMPERATURE CHARACTERISTICS



The Cure shown above accounts for resonator contribution only and does not include oscillator temperature characteristics

### TYPICAL FREQUENCY RESPONSE



 Standard package in T/R: 3000pcs/Reel, 2Reel/box, 5box/Carton See page 182 for detail dimensions

